On Unimodular Finite Tensor Categories

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Tensor Categories

We start the general structure theory of not necessarily semisimple finite tensor categories, generalizing the results in the semisimple case (i. e. for fusion categories), obtained recently in our joint work with D. Nikshych. In particular, we generalize to the categorical setting the Hopf and quasi-Hopf algebra freeness theorems due to Nichols–Zoeller and Schauenburg, respectively. We also gi...

متن کامل

On the Exponent of Tensor Categories Coming from Finite Groups

We describe the exponent of a group-theoretical fusion category C = C(G,ω, F, α) associated to a finite group G in terms of group cohomology. We show that the exponent of C divides both e(ω) expG and (expG), where e(ω) is the cohomological order of the 3-cocycle ω. In particular exp C divides (dim C).

متن کامل

An Analogue of Radford’s S-formula for Finite Tensor Categories

We develop the theory of Hopf bimodules for a finite rigid tensor category C. Then we use this theory to define a distinguished invertible object D of C and an isomorphism of tensor functors δ : V ∗∗ → D⊗∗∗V ⊗D. This provides a categorical generalization of Radford’s S formula for finite dimensional Hopf algebras [R1], which was proved in [N] for weak Hopf algebras, in [HN] for quasi-Hopf algeb...

متن کامل

Representations of vertex operator algebras and braided finite tensor categories

We discuss what has been achieved in the past twenty years on the construction and study of a braided finite tensor category structure on a suitable module category for a suitable vertex operator algebra. We identify the main difficult parts in the construction, discuss the methods developed to overcome these difficulties and present some further problems that still need to be solved. We also c...

متن کامل

Tensor Categories

These are lecture notes for the course 18.769 “Tensor categories”, taught by P. Etingof at MIT in the spring of 2009. In these notes we will assume that the reader is familiar with the basic theory of categories and functors; a detailed discussion of this theory can be found in the book [ML]. We will also assume the basics of the theory of abelian categories (for a more detailed treatment see t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2016

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnv394